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Abstract

Theoretical conditions for applicability of the quasi-
linear theory (QLT) are formulated. To investigate the
importance of these conditions, numerical experiments

are performed on two different types of weak 1-dimensional
plasma instabilities. It 1s found that the behaviour of
the bump=-in-tail 1nstability 1s consistent with QLT
(saturation field energy <E’>/J’g-w7-m linear growth rate )" ] 1f
these conditions are satisfied, while in the opposite case
trapping stabilisation 1s important _trapped particle
bounce frequency th -~ J‘ ) The weak symmetric
two=-stream instability never satisfies the criterion for

validity of QLT, since all particles that are supposed to
Av- i

diffuse are trapped ( dv diff trap)' Incidentally,

however, the first saturation level predicted by QLT is

the same as given by the condition for trapping stabili-

sation CUL ~ J‘ . The 1mportant deviation 1n this case from

weakly turbulent behaviour 1s apparent from the coherent

mode coupling process, which becomes (relatively) the

stronger, the weaker the instability.




On the Validity of the Quasi-linear Approximation

f'or Turbulent Plasmas

by D. Biskamp and H. Welter

1) Introduction

The quaslilinear approximation is the simplest approach

to describe the evolution of certain weak plasma instabili-
ties. It was conceived almost 10 years ago 1, 2 and since
then has divided plasma theoreticians into two schools:

the practicians who use this approach because of its
simplicity (in many cases: it is the only practical way)

and the sceptics who feel that it 1s too simple to be
reliable, and who have indeed good arguments that the
quasilinear approiimation is rather doubtful in most

cases of'practical interest. With the advance of

computer simulation of collision-free plasma dynamics

the computational plasma physicists have Jjoined the
discusslon as a third group. Looking at their numerical
results, they normally see a béhaviour guite different

from the prediction of quasilinear theory and thus

claim to have "proved" that this approach is not correct

and should be revised. However, in many numerical experiments
the conditions are clearly outside the applicability'range of
this approximation and hence the observed discrepancy 1s not
so surprising. Clarification of this somewhat confused
situation seems to be useful. In this note we shall first

summarize the theoretical conditions for validity of the

quasilinear approach. To see how critically the behaviour




of the instability depends on these conditions we then
study two well-known types of instabilities, the
bump-in-tail configuration and the weak symmetric
two-stream instability, by a set of numerical simulation

experiments.

The basic equations to describe a turbulent collision-free

plasma are the equations for the mean distribution

functions 'fo}' = <1(, > )

C o~ . )

o BegeW o sLfE - ceps]
J -—

Here f%?f is the zero order Vlasov operator for the

time change along the unperturbed particle orbits taking

into account inhomogeneities and external fields. The

first assumption in the quasilinear approximation is to

neglect the nonlinear term in Eq.(2). The next step

consists in introducing a scaling into the truncated

Eq.(2), considering spatial and temporal changes of 1%;

and the external fields negligible over typical wazs-

lengths and periods of the fluctuating quantities {} s

such that in solving Eq.(2) ‘)(;) is considered a known

function of Et . This scaling 1s the origin of the irrever-

sible (diffusion-like) behaviour which the usual quasi-
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linear equation describes as compared to the reversible
system (1) and (2) (even in the truncated form). The
solution of the linear part of (2) contains the usual

kvt
e — contributions originating from the initial per-
turbations. These are assumed to be negligible in the

- C.w.t

equation for {;j as compared to the € - terms, which

is only possible for growing modes. The resulting system

can be written in the form:

fﬁé; ) D 3(&'

= 8

(3) d¢ = v =) 3¢

,E;/t = 2)5 /65/?—

The system (3) is in general useful only in 1-dimensional

, pll&S 2

cases. For multi-dimensional problems the equations are
not only hard to tackle, there is also some doubt about
thelir significance 1n these cases. Since as a rule there

1s no stationary solution of (3) with [E4(° # ©

in 2= or 3-d 3, 1t can be indirectly concluded that
eventually the m?des must be d%Eped, in which case the
problem of the e‘h't -parts of -6 will arise. We shall there-
fore consider only 1-dimensional problems here. The general
time evolution predicted by the system (3) 1s well known:

1) .j 1s changing in a diffusive way, flattening peaks,

filling wells, with a tendency to form a plateau.

2) The mode energiles /El/" , initially




increasing exponentially are stabilized, remaining
constant. The same 1s of course true of the total

Mo
fluctuation energy <& >/Ix .

2) Theoretical conditions for quasi-linear behaviour

In this section we state some conditions that
should be satisfied to Justify a quasi-linear approach
and describe briefly what 1s believed to occur if

these conditions are violated.,

Since in the quasilinear approximation the main part

of the nonlinear interaction,the mode coupling,is

neglected, it 1s evident that the instability has to

be sufficlently weak. This can be expressed as a

requirement on the growth rate, e.g. ]}Qq, <& , for
electrostatic instabilities, or more adequately as a

condition on the saturation value of the fluctuation

energy compared to the thermal energy,‘(gl)s /PthT; M <x /.
W¢ is related to the free energy available to drive the
instablility, which should be sufficiently small.

The irreversible character of the quasi-linear approxima-
tion, which is evident from the diffusion equation
(3), requires the presence of some random or stoghastic

process. In a collislonless system such a process can

only be provided by a stochastic nature of the
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instabillty. Hence as a necessary condition there must
be a sufficlently broad spectral range dﬁ of unstable

waves.

For a nonresonant instability, if a large partdﬁ; of

the distributlion function is affected, random-

ization 1s introduced by scattering of the particles

by a stoachastic wave pattern of correlation length =~
(4k)™" . This process is similar to the scattering
of electrons by the randomly distributed ions in a

Lorentz gas. A condition for the validity of the

diffusion approximation is v,dl > r , where

‘lf; is a typical velocity from the range dy .

In the case of a resonant instability the particles
mast affected by the instability are located near the
phase velocity of a wave. In order to have these
particle moving stochastically, the wave pattern itself
must change in a random way. Hence the unstable waves
have to be dispersive, with a sufficiently broad range
of phase velocities 4%k , such that &, a % D)y,
where ‘, ls a typical value of the spectrum CT‘,

If the diffusion process 1is not effective, the
stabllization is said to be due to particle trapping.
The idea of trapping refers to a coherent wave, catching

particles while growing and swirling them around in

phase space. This ordered motion is perturbed by any




change of the wave pattern and becomes quite random if
the correlation time of the wave is smaller than the
bounce period~coé'! of" a trapped particle. Hence a
"nonlinear" condition for "diffusive" behaviour of the
particles is &, (4 c"J/‘,)‘s > @y , where Cobz = %é:és ,
(4 Qyz )5 1s the range of phase velocity of the
spectrum at the saturation time and ¢& is the saturation
potential amplitude. This implies a condition on the
initial fluctuation level. Since J’ﬁ%)is a continuous
function with a maximum value at b, (Fig. 1a), an
initially broad spectrum uQ(Fig. 1b) will become more
and more peaked around ‘% (Fig. 1¢), the longer the
phase of linear growth lasts. Thus a broad (14 QVZ )o
will shrink essentially to a single mode, (d @/k)$ a O
at saturation time, if k‘/4L§ is too small. In this

case trapping must be the main stabilization mechanism.

In this case an estimate of the saturation energy can be

obtained by arguing that the particles should be turned

around by the wave in a linear growth time, W‘, b r .
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In the case of a nonresonant instability
the "nonlinear" condition for trapping effects to be
unimportant 1s that the number of trapped particles be
small as compared to the number of diffusing particles,
ZJZQ% & ‘ijQ? ; élqkf' - Cle ¢a [m
These conditions and implications can be tested in
numerical experiments by comparing the experimental
behaviour of {,}-(f}f CEXer E, ({)/" with the
theoretical predictions and investigating the dependence
of these quantities, in particular the saturation field
energy {bg » on the type of instability, the growth

rate, and the initial conditions.

3) The bump=-in-tall instabllity

As the prototype of a resonantly unstable system we
consider the bump-in-taill configuration. We shall

first show that the usual criterion for weakness of an

instability mentioned in section 2), Jf/hﬁp &« | .

whioﬁ is convenient since it refers to the linear

quantity Jﬁ , 1s nbt very significant, and that 1t 1s

necessary to know the saturation level n& in order to

estimate the importance of the nonllnear term.




In Table 1 we compare the growth rate I;‘xfddP and
saturation energy kG for two bump-in-tail configu-

rations of the form

,_ "b -1’1/’1. A . (U’—ub)t/zv:'
(%) f.6) = = e t"e
x e Y

with different drift ¥ and thermal spread ¥, of the

beam.
'76 Uy LQ §max u@
Table 1 5 & 6 2 5.3x1072 | 1 %
5 % 3.7 | 0.7 | 6x10™% |0.18%

Although the growth rates are approximately equal, the
values of the saturation energy WS (here WS is the
electric energy over the total energy) are quite
differentT)Since even in strong electrostatic instabili-
ties only a few percent of the free energy is trans-
formed into electric egggﬁgggthe upper case in Table 1,
with h& = 1 %, shows that conclusions from the smallness
of the growth rate, r/(gP & / , about the weakness

of the instability 1is dangerous.

+) This can be understood qualitatively since the free
energy, characterized by the kinetic energy of the
bump, 1s much different. Particles must diffuse over

a much longer distance in U -space in the upper case
to form a plateau in f: .
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In continuation of the extensive numerical work on the
bump-in-tail instability, especially by Dawson and

4
Shanny and Morse and Nielson >

s we performed a

number of numerical experiments, using the PIC (particle-
in-cell) method as described in detail by Morse and
Nielsoné We wanted to study the behaviour of the very
weak instabilities in a more systematic way, varying the
growth rate only by changing the strength of the bump M ,
keeping drift velocity Uy and thermal spread Lz constant,
SO that the type of instability is changed as little as
possible. We consider an initially homogeneous system with
an electron velocity distribution as given in Eq.(4),

with U = 3.68, ¥, =0.7T and M =4 %, 5%, 7,5 %, 10 %.
All four cases are sufficiently weakly unstable, with
unstable modes having a broad range of phase velocity

A W/k ) bodw/k > J" , as can be seen from Table 2.

To be definite we take R, such that )’(k.) = Imax

&, )
d d-‘-ﬂ = 9_{%)_ U(; k b such that
ylk) = ylh,) = 3’3’“* as indicated in Fig.1
@
hb J’M:l ko kodr
L % 0.047 0.30 0.175
+
Table 2
5 % 0.06 0.30 0.185
T:5 % 0,087 0,29 0.2
10 % 05107 0.29 0.196

+) d"' i,d""/k in units of wy , k in JD-,
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We should emphasize that it 1s not sufficient to make

the second beam weak without considering its thermal

spread and drift velocity. Most cases treated previously

by particle simulation with typical M4 =5 % can be seen

fo be outside the validity range of the quasi-linear

approximation, )’ being quite substantial (> 0.1 %),

the saturation energy rather high (> 1 %)s,and k a w/k < r
. When simulating an infinite plasma the

computed system should be long enough, S5O0 that the

discreteness of the k =gpectrum 1s negligible. In the

present cases we choose[ = 1000 p» SO that there are typically

50 linearly unstable modes. Mﬁch smaller system

lengtls are found to be inadequate; with { =100 - 200 Ap,

as often used in previous simulation work s 4, the

discreteness of the.h -spectrum 1is qather strongly pro=-

nounced, S0 that normally a single mode will dominate

in the nonlinear phase. The number of particles per

Debye cell, h AD » used in these experiments ranges from

200 to 800. The point of using such large numbers is not

to reduce the collision frequency,which is small in

1-dimensional plasmas , ¥ ~(h }p )—L , but to keep the

thermal fluctuation level low enough, W. /Ws &« ’,

SO0 that the collective oscillations can clearly be

distinguished from the thermal noise. To prove or disprove
the validity of the quasilinear approximation, we want

to investigate the behaviour of the total electrostatic field

A
1
energy <€ >/.Px w] ® W/ , the energy of the single modes
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(EgJ‘y/f!hT =Vk and the average distribution function{. ’
varying the strength of the instability, 1.e.ar , and

the 1nitial perturbation level hL s 1.e. the level of

thermal nolse. We first carry out a set of numerical
experiments where we choose MQ only a few CndblAings

below the saturation level, fﬁ w%4; <:‘? . The

behaviour of w{é) for the different obeam densities is

shown in Fig. 2 a=-d. While cases a) and b) are qualitat=-

ively consistent with a quasilinear behaviour, there is

an increasing discrepancy towards higher beam

densities, case ¢) and especially case d), which show

(though not very strongly) an "overshoot" of W at

saturation. This "overshoot", which has been reperted in

most of the previous simulation work on the bump-in-tail
instability, 1is Just the first half-cycle of a trapped_particle
oscillation,and its appearance indicates that coherent
trapping plays an important part in the stabilizdtion

process. Thus one may interpret the overall behaviour

of h/ in Fig. 2 such that for the weakest case a) trapping effects

are small - but become increasingly important

towards stronger instabilities.

To investigate the condition K, (8% )¢ > @, , mentioned

in section II, we determined 6, (4% )S from the

correlation time near saturation'~Py megiyring the correl-

ation function j[f.,?.’) = r‘{” Eﬁ'rfo)E(x,f.“r) /fdk glﬁ,t).
In Fig. 3 96‘;,!')15 shown for #g= 5 %. The decay time

is roughly /0 w’" , hence ‘. (0 Q/ﬁ.)s o ./COP .
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On the other hand we find from the saturation
fluctuation energyl({s==1.75o1o'3 (see Table 3) that
W, » . ] . Hence both are approximately equal,and
the weak turbulence assumption that trapping is
negligible 1s only marginally valid. Because of the
very weak dependence of @ on 7 , Wy~ Wﬁq , it 1is
clear that the turbulent energy must be extremely
small to make @, clearly smaller than é, (d ")/k)s '
so that in practically all cases of interest the
condition is not satisfied in the strict sense. Since,
on the other hand, the behaviour of’hé for h £ 5 %,
Fig.2, a, b , 1s consistent with the quasilinear
approximation, it seems that the criterion mentioned above
is too strict and should be relaxed to be (d%’)‘ > Wy
For cases Fig.2, ¢, d £ (h “Zl), is somewhat smaller than .
Wy and hence trapping. certainly plays a stronger

role. ' "

To investigate the influence of trapping from a different
point of view,we measure the dependence of the saturation
energy Ws on the growth rate ) / VS ~J‘d . From the
quasi-linear equation one would expect ‘4{5 ~ J" , l.e. o2/,
while in the case of trapping stabilization the particles
should be turned around in phase space during one linear
growth time, G)b ~J‘ , Where w‘, is the bounce frequency,
which would give a relation kg A 3‘4 . Of course, the

numerical'faetors are unknown, and hence a single

experiment or several uncorrelated experiments are of no
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use. Since, however,we varied the growth rate without
changing the type of instability,we can hope that on
comparing the results of two experiments a, b the numerical
factors will essentially drop out and the ratio h/;‘/‘(/;b =
()"“/)‘b)a can provide a relevant value of & . The
results are given in Table 3. Since in the presence of

a broad spectrum the linear growth rate:is different

from ,max’ we have used in Table 3 the effective growth
rate determined experimentally from the curve W(t).

We find that O 1s rather close to one for the weakest
instability considered, increasing significantly with
increasing[ and “4 , which would be consistent with

the interpretation of Fig.2 a=-d, mentioned above, that

for thzozzrongly unstable cases c¢) and d) trapping becomes
important. To make the argument convincing 1t would have to be
shown that in the case of strong trapping the relation
M ~J’“ is valid with of close to 4. Since, however, the
relation ‘Q“'J’ is not a strict, but at most a quali-
tatively valid condition, and since the relation “G 5 J"
is derived from &Q~]‘ by taking the fourth power, thus
strongly enhancing slight changes of the numerical factor
which will no longer cancel when comparing different
experiments, we shall be content to find o closer to 4

than to 1 for strong trapping. As expained in section 2,
trapping can always be made more important merely by

reducing the initial perturbation level. As an example

Fig.4 shows the behaviour of “/ for case c), ”6 = Te5 %




Table 3 3 e
hy Y Wy |W AL YAt
4 % 0.022 0.10 % 1.7 1.47 1.4
5 % 0.03% | 0.17 #
3.9 1.48 1.85
7.5 %| 0.049 | 0.36 #
10% | 0.059 | 0.65 & 1.8 1.2 3,1

with the thermal level reduced by a factor of 10 as

compared to the case shown in Fig.2c. In contrast to

Fig.2c the overshoot is clearly pronounced here. To force

the system to show

extreme single mode behaviour and

consequently a pare trapping case,we shortened the system

length, so that only one mode, the one with the maximum
growth rate,was linearily unstable. In Table 4 the results
of a set of simulation calculations are given for the same

distribution functions as used in the different cases

of Table 3, but with initial conditions corresponding to

single mode growth., Here a’ is the maximum growth rate

E/max of Table 2, and vv; in the second column is an

average value over several similar runs that differ only

in the initlalization.
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Table 4 a
b W, /v | §/ve
b 3/ k@ 3/1;£ ’:} x
4 % | 0.047 0.110 % 1.68 1.28 | 2.1

5 % 0.06 0.185 %

2.5 1.45 2.46
7.5 % | 0.087 0.465 %

10 % | 0.11 0.86 % 1.85 1.26 2.66

In these single mode cases of is definitely larger than / .
For the weaker instabilities considered, a) b), the
exponent of is clearly different in this case from that of
a broad spectrum, Table 3, while for the more strongly
unstable cases, c), d), the difference becomes small.

The exact numbers given in Tables 3, 4 should of course
not be taken too seriously.\fsvaries when starting with
different statistical initializations, but the variation

is scarcely larger than 5 %.

According to weak turbulence theory, the slow decay

of the wave spectrum, seen in Fig.?’, should be due to
nonlinear wave-particle scattering since resonant 3-wave
mode coupling is forbidden. The decay of Langmuir turbulence
has been treated in detall, see Kadomtsev IV.1.6. However,
because of the particular shape of the distribution funct-
ion (see Fig.7) these results are not applicable in our case.

The waves cannot diffuse in b_—space to k: O since the

part in ¥Y-space where fb drops from the plateau to zero,
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-fo' < O , constitutes a region of significant Landau
absorption. Hence we suggest the following process of
wave decay without carrying out the tedicus work of
solving the kinetic wave equation. Waves diffuse in
l? -space toward smaller ‘?-values, which means larger
phase velocities, until they reach the end of the
plateau, where absorption sets in. In contrast to the
decay of Langmuir waves in a single humped Maxwellian
distribution, the wave energy will not remain constant,
but decay. Analyzing the wave spectrum, the process of
mode diffusion in h -space can clearly be seen for the
more strongly unstable cases 1n Fig. 2c¢, d, while it is
nearly imperceptible in the weakly unstable cases a, b.
If this turbulent mode scattering 1s the main source of
decay of the wave spectrum, the decay rate should be of
the order ofw and should be approximately proportional
to »J. It can be measured from Fig. 2 that this is

roughly true.

In contrast to the total fluctuation energy‘f , the
single modes‘li do not, in general, show a smooth,
"quasi-linear" behaviour. They rise or decay rather
abruptly, which cannot be explained by turbulent mode
coupling or nonlinear wave-particle scattering. Their
time variation does not decrease towards larger system

sizes, 1.e. by increasing the number of modes and

decreasing their distance J& -27{ IL However, the
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fluctuations of u@ are not completely random. By

analyzing the wave spectrum more closely, it is frequently
found that, if a certain mode 1s decaying, some mode close

to 1t rises so that their sum 1s approximately constant.

One explanation would seem to be that it 1is not single
Fourier modes but rather wave packets with a certain width
de > Ak that are the real physical elements of the
turbulence, where dé is some function ofh/ which should decrease
with decreasing u/. Modes within'dﬁ are no longer independent.
A small spatial distortion of a wave train shifting the

mean wave length by a small fraction gives rise to a

sudden decay of a mode, while some neighbouring mode is
growing. Summing neighbouring modes in an appropriate

way leads to "supermodes", which behave much more smoothly

with time than the individual Fourier modes.

In the development of the instabllity, especlally for the
more strongly unstable cases, these supermodes tend to
sharpen, l1.e. the spectrum, initially quite smooth, has a
tendency to develop a small number of peaks, where

the central mode of a supermode grows at the expense

of its neighbor modes. This phenomenon can be inter-
preted as mode locking, a mode growing rapidly at the
expense of 1ts neighbors. If the spectrum is rather
narrow, often only a single mode is growing strongly
(there is only a single supermode then), leading to the

overshooting trapping oscillation usually seen in

previous simulation work. In Fig. 6 an example is shown
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of a broad spectrum disintegrating into several super=

modes.

In contrast to the fluctuation energy the behaviour

of the average distribution function does not depend
sensitively on the form of the spectrum. This behaviour
has already been found in previous simulation calculat-
ions 4, and 1t 1s not very surprising since velocity

space diffusion and coherent trapping have essentially

the same effect on -fo , filling up the well between

the bump and the bulk of the distribution. In all four cases
considered "5: 4L € - 10 %, the plateau formation was
nearly perfect. Since the instabilities are weak, the
distribution is noticeably changed only in the plateau,
where the unstable phase velocities are located. Outside
this resonance region the change of the distribution
function dﬁ" -ﬁ("‘)'{aﬁ)goes to zero very rapidly, d{z and
d£3 , defined in Fig.8, being hardly perceptible in
the real plots of the distribution function (see Fig.T7).
They can be ascribed to nonresonant diffusion (see Ref.§ ).
In the usual verslion of the quasilinear treatment of the
bump-in-tail instability, the energy integral predicts

that half of the kinetic energy lost by the small bump owing
to the plateau formation is transformed into electriec
energy, and half into heating of the main bulk. We can
revise thils pilcture somewhat. As mentioned above, the
distribution function 1s deformed only in the immediate

neighbourhood of the plateau. Since the particle numbers

B
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h, = J,:/V 4)4.-. and M, = fO‘v JA, are about equal,

it 1s evident that the main contribution to the energy
redistribution comes from d’[o, becaus% of t{le higher
velocity. We measured E(u-) = ,(d(v- -zt: dﬂ , which
- %0
is qualitatively plotted in Fig.8. The main part of
the energy obtained by plateau formation, Ehu - E(OO) ,
goes into heating the bump, while the temperature increase
of the main bulk is negligible. The fraction E(a')/f,”.x
E(ﬁ') being equal to the electric energy by energy conser-
vation is smaller than 1/2 (~ 20 %) Dbecause of the
different dispersion relation (the usual factor 1/2 comes

*
from the dispersion relation €& (w)% /- :%—P , where

3

because of wg—: =2 the kinetic part of the turbulent
energy 1s equal to the electric part). Another inter=-
esting feature we noticed 1s the change of d%; and

of G?G{) in the decay phase of the spectrum after
saturation. Most of the energy lost Dby the electric
oscillations goes into the change of dﬂ{;s s which
is consistent with the picture,described above,that the

{
waves are absorbed at the upper edge of the bump, where {. < 0,

4) The symmetric two-stream instability

A characteristic feature of many nonresonant instabllities

w
is that there is little or no dispersion, a4 "k' & v'.y,

or, more precisely, i d%” L7y . Since here the wave
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pattern does not change stochastically, those parficles
which provide for the main contribution to the stabili-
zing diffusion process, must cover a sufficiently large
region 4 U in velocity space. The classical example is
the firehose instabllity, where the idea of nonresonant
quasilinear diffusion was first introduced by Shapiro

and E‘al’u-:nvsahenlrco7 . Here the resonant denominators (élf-to)-f
cancel and the diffusion coefficient contains only posi-
tive powers of P . Unfortunately however this seems to be
an exception. In a numbe?finstabilities the C;-function
contribution 1s absent because of symmetry properties of

the distribution function, but the diffusion coefficient

strongly depends on ¥ in the vicinity of the

wave velocity. As an example we consider the
symmetric two-stream instability of two equal warm
electron beams near the marginal drift velocity, see Fig.9.
The phase velocity of the unstable waves is exactly zero.
Hence the quasilinear equation (3 ) becomes approximately

o Fet? s la)t U o ros nkiYy o

ot b e 9,,— & ,'(&u._ "’t) v~ ht* PV & kl v.;gl—;

)

which can be written in the compact form:

o 2L Ly kg &
k

(6) = = i- T

B 4
% " 9 v Ty 2 Wt

Equation (6) can be solved exactly ylelding {(v;/.) in

terms of the initial distribution; however,the analytical

expression 1s rather complicated and shall not be given




- 21 =

here. Instead we discuss Eq.(6) qualitatively. The
main diffusion effect occurs near the origin, making the
distribution flat, as shown in Fig.9; the diffusion stops

when {;(v; I,) has become marginally stable.

Let us investigate this behaviour more closely for the
case where the distribution function consists of two

equal Maxwelllans:

m  he)= L L e T 4 e *
2 Vzx

(¥ # normalized to the thermal velocity).

The critical value of the drift velocity & 1is &, % L3,

and we shall consider slightly unstable systems,

-t =& &/ . The instability is switched off if,

according to the Penrose criterion,

[ '(‘(""‘)"C["“a/,,

v‘

(8)

Using the distribution funcgion shown in Fig.9b, Eq.(8)
yields z Iy '1?_:'—"43“ - E ~ E . Since
from Eq.(6) b ‘\-1};"' , we find h~c¢ : . The
linear growth rate for the distribution (7) or weakly
unstable drift is approximately [} 2’/- ¢ —L)

and the maximum value rhmx r&, -\-g with A. ~ &

Hence we find the saturation level:

& ~ 2 /3

=2
(9) h ~ ?& ~ & kg ﬁ'éil q'dy
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Since essentially the particles with U £ ¥, & Vi
are affected by the diffusion process, a necessary
condition for applicabllity of the quasi-linear approxi-
mation is U, p-> ] A'U‘.f.,. . However, from the preceding
consideration dvﬁa-f&_ﬂ» ¥, . Hence all particles that
should diffuse by being scattered by a random wave
pattern are indeed trapped within a single potential
well. This behaviour is independent of the growth rate,
which means that also for very weakly unstable systems
stabilization should occur by trapping of particles, i.e.
coherent rather than turbulent behaviour should
dominate. Mathematically this can be seen from Eq.(2)

where for V< U, no different time scales can be

distinguished, kv-, ~ 5 . Hence the conclusions
drawn from quasi-linear theory, especially the result

Eq.(9), are not reliable.

Surprisingly the amplitude for trapping stabilization
glven by the condition GJ"\- d‘ s as mentioned in

sectlion 2, leads to the same hé()ﬁ) relation as obtained
from the quasilinear equation, namely "\G e a" w3 /
Eq.(9). In this respect quasilinear and trapping behaviour

are indistinguishable.

To study the nonlinear evolution of this instability we
have carried out . a set of numerical experiments
using the distribution (7) as initial condition for three

different cases. The parameters are found in Table 5.

Table 5 U I e ¢,
1.45 0.032 0: 17
1.5 0.045 0.188
1.55 0.059 0.204
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System length was L = 300 1 , and the number of simulation

particles ranged from 2 x 105 to 8 x 105. The results ~
{é°D>
Fr

are shown in Figs 10 and 11. While for themore strongly

for the fluctuation energy‘k/ and the potential V’=

unstable case L - 1.55 h/{f) to some extent shows

the familiar features with linear growth, saturation and
slower decay, the weaker instabilities exhibit an in-
creasingly different behaviour. There 1is a first saturation
level ,after which W tends to rise further. This is more
clearly seenby considering the behaviour of’V', Fig. 11.
Since this quantity enters the quasi-linear equation, 1t
is evident that there is no real quasi-linear behaviour.
From a spectral analysis it is seen that the further
increase of b’ is due to the decay of the strongest mode
and simultaneous increase of the mode with about half the
wave number, which is the same phenomenon as the
coalescence of phase space vortices, described by Morse
and Nielson 5 in the case of the strong two stream in-
stability (in our case phase space plots do not show

any significant structure because of the much weaker
instabilities considered). This 1s a strong,coherent

(not turbulent) mode coupling effect, which becomes
relatively the more pronounced the weaker the instability,
as seen from Fig 10 . Comparing the first
saturation levelwhich u/ reaches at-& = foikn‘the three cases
considered, the result is consistent with Eq.(9). However,

the distinction between a quasi-linear and a mode coupling

phase becomes rather artificial.
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Conclusions

To investigate the conditions for validity of the quasi-
linear approximatlion, we numerically considered

two types of weak electrostatic instabilities: the
resonant bump-in-tail instability and the nonresonant
weak symmetric two-stream instability. In the first case

it was seen that forasufficiently small and gentle

bump the main features of Q.L.T are verified 1in the
numerical simulation experiments, if the initial condit-

ions are such that at saturation time the spectrum is
sufficiently broad, with k(d%)s 2 W . With these
conditions the electric fluctuation energy W = <EY> [FxnT

theyronounced "overshoot" known

does not,in general,show
from previous simulation work,and the following silow

decay rate 1s roughly proportional to k/. If

unstable system 1s started from a much lower thermal
fluctuation level, the nonlinear spectrum is strongly
peaked and the trapping oscillation overshoot 1s clearly
seen, Thls dependence on the initial perturbations implies
severe restrictions 1f one tries to satisfy the quasi-
linear conditions strictly on a real experimental set up
since 1in a real plasma the number of particles in the
Debye cell 1is large and hence the thermal fluctuation

level very low. Either the instability has to be extremely

weak or the plasma must already carry a broad band super-

thermal nolse ©before the instability sets in. Therefore
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in many real experiments not a turbulent but a coherent
single mode behaviour with trapping oscillations is to be
expeoted; although the saturation fluctuation level
averaged over a trapping period will not be too different
from the corresponding quasilinear level, and the
averaged distribution function,which is quite in-
sensitive to the form of the spectrum,will show a

plateau like form in most cases.

In contrast to the bump-in-tail instablility the quasi-
linear conditions can never be satisfied for the symmetric
two=stream instablility since the particles within the
range'dzr, where diffusion like behaviour 1s assumed

are trapped within a single potential well, 4av ~ tﬂv%r-

The fact that the first saturation level seen in the
numerical simulation of this instability is oonsistent
with the predictions of the quasl-=linear equation is not
too surprising, since incidentally it coincides with the
results of trapping stabilization given by the relation

GQ“V a’ « The inapplicablility of any weak turbulence
theory becomes evident from the strong mode coupling
process, which has a coherent not a turbulent character
and which persists also for very weak instabilitles whefe
a "quasi-linear" phase can hardly be seen. Hence there
is some Jjustification forcalling certain nonresonant

instabilities such as the symmetric two-stream instability

"dangerous instabilities”.
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Figure captilons

Fig

Fig

Fig

Fig

Fig

Illustration of the dependence of the nonlinear

spectrum on the initial conditions,

Time behaviour of the field energy h/(%a)
of the bump=-in-tail instability

for a) My =4 &, b) Hy =5 %,

c) hb = T.5 % d) "5=10 %

Correlation function gﬁ,r) with t= 50 for

the case h{, = 5 %, shown in Fig 2b).

Time behaviour of u#%)for Qb= 7.5 %, but with
the initial fluctuation level WQ reduced by
a factor of 10 as compared with the case

shown in Fig 2c).

Trapping oscillations for a single mode case

with i?,, =5 %.

The broad spectrum with several peaks of the case
shown in Fig 2c¢ , near saturation time (one

column for each mode).

'ﬁ/?)’) forhb=4% a)atfzo
b) at ¢ = 150; for Ny=17.5% c) at ¢ = O,
d) at ¢ = 150




Fig 8

Fig 9

Fig 10

Schematic representation of f; and of
-f
T
E(‘U') = fa{v._'l{ A-)[ in the resonant
2_ [ =]
- QO

region.

Illustration of the development of 7€ in the

weak two=-stream instability.

Time behaviour of the field energy h/&U (left
column) and the square of the potential V{f’)

(right column) for a) and b) & = 1.45,

b)and d) W = 1.5, e)and f) U = 1.55.
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